White Peach Scale

Pseudaulacaspis pentagona

Description

White peach scale is an armored scale insect that is a serious pest of fruit and ornamental trees. Female scale have a round, white body with an orange to yellow central hue that gives them a “fried egg” appearance. Male scale are solid white and are more elongated. Clusters of male scale give bark a fluffy appearance.

Life Cycle

White peach scale overwinter as adult females. In Tennessee, the first of three generations hatch from more than 100 eggs per female and emerge as crawlers in early May. The second generation hatches from late July to early August, and the third generation emerges in early September.

Monitoring

Monitor crawler emergence by wrapping a heavily infested limb with double-sided tape and checking twice a week. Try to monitor infestations comprised mostly of live scale insects, which appear moist and creamy white to reddish-orange. Dead scale insects are black or gray and shriveled. A hand lens is helpful in detecting crawlers trapped on the tape as they crawl toward terminals.

Host Plants

- Cherry
- Dogwood
- Goldenraintree
- Lilac
- Persimmon
- Privet
- Redbud
- Spirea
- Many others
Damage Symptoms

Symptoms of white peach scale infestations include prematurely yellow leaves, leaf dieback and eventually tree death. A substantial amount of natural scale mortality can occur in the first two generations. The third generation is responsible for the greatest spread and increase in population. Armored scale insects do not produce honeydew.

Integrated Pest Management

BIOLOGICAL CONTROL
Ladybird beetles, parasitic wasps, a predaceous thrip and a predaceous mite are all effective predators of white peach scale insects.

CULTURAL CONTROL
Manage scale populations when first detected before they become more difficult to control. Scale thrive on stressed plants. Proper fertilization and irrigation will promote a healthy plant. Do not over fertilize, though, because excessive fertilizer can increase scale populations, injure foliage and roots, and cause other problems.

CHEMICAL CONTROL
Please refer to http://eppserver.ag.utk.edu/redbook/sections/trees_flowers.htm for the most up-to-date recommendations.

Resources

Photo credits: Clemson University — USDA Cooperative Extension Slide Series, Bugwood.org
John A. Weidhass. Virginia Polytechnic Institute and State University, Bugwood.org
Pennsylvania Department of Conservation and Natural Resources — Forestry Archive, Bugwood.org
United States National Collection of Scale Insects Photographs Archive, USDA Agricultural Research Service, Bugwood.org

THE UNIVERSITY OF TENNESSEE

INSTITUTE OF AGRICULTURE

Prepared by Heather Bowers, Intern, Department of Plant Sciences and Dr. Amy Fulcher, Assistant Professor, Department of Plant Sciences
Publication funded by USDA Extension IPM Grant in partnership with University of Kentucky Integrated Pest Management Program.
The authors thank M. Halcomb, B. Klingeman, W. Russell and F. Hale for their careful review.

Programs in agriculture and natural resources, 4-H youth development, family and consumer sciences, and resource development.
University of Tennessee Institute of Agriculture, U.S. Department of Agriculture and county governments cooperating.
UT Extension provides equal opportunities in programs and employment.