PREDICTING CORN NITROGEN RESPONSE USING ALKALINE MINERALIZABLE-NITROGEN AND HANEY SOIL HEALTH TOOL-NITROGEN IN TENNESSEE

August 2022

Nutifafa Adotey, Department of Biosystems Engineering and Soil Science
Xinhua Yin, Department of Plant Sciences
Ryan Blair, Western Region UT Extension

Key Takeaway: Only the alkaline hydrolyzable-nitrogen (N) predicted corn response to N, which was observed at the 12-18-inch depth ($R^2 = 0.46$).

Introduction

• Current N fertilizer recommendation does not account for potentially mineralizable N; hence, there is a possibility for either over or under application of N fertilizer.
• Roberts et al. (2011) reported the adequacy of alkaline mineralizable N to predict rice response to N.
• Information on the adequacy of alkaline mineralizable-N or estimated biological N component of Haney Soil Health Test (HSHT) to predict corn response is limited.

Objective

• Assess the adequacy of alkaline mineralizable-N and Haney Soil Health Tool-N to predict corn N needs.

Trial

• Year: 2021.
• Experimental Design: RCB/4 replications.
• Locations: Milan and Jackson, Tennessee
• Production System: no-till dryland.

• N rates: 0, 60, 120, 180, 210 and 240 lbs. N/A (60 lbs. N/A was applied at planting and the remaining N applied between V4 to V6).
• Crop: Corn.
• Crop management: University of Tennessee recommendations.

Results

• Application of N significantly increased corn yields at both locations. Both locations exhibited a significant and a positive response to fertilizer N.
• Corn response to N at the Jackson location did not plateau. However, at the Milan location, grain yield increased with N rate and plateau at the 150 lbs. N/A (Figure 1).
• The best predictive relationship between the grain yield of the check-plots and alkaline hydrolyzable-N was found at the 12-18-inch depth ($R^2 = 0.46$). In contrast, the correlation between the yield of the check plots and the estimated biological N component of the Haney Soil Health Test was not significant at any depth (Figure 2).
Figure 1. Corn response to N fertilizer application at the Milan and Jackson locations.

Figure 2. Relationship between grain yield of check plot and (A) alkaline-hydrolyzable nitrogen at the 12-18-inch depth and (B) estimated biological-N component of HSHT at 6-12-inch depth.